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Abstract

We introduce the sparse direct sampling method (DSM) to estimate properties
of a region from signals that probe the region. We demonstrate the sparse-
DSM on two separate problems: estimating both the angle-of-arrival of a radio
wave impinging on an array and the location and shape of an inhomogeneity
from scattered acoustic waves. The sparse-DSM is qualitative in nature, so
it does not require the simulation of a forward problem to solve the inverse
problem. The method generalizes of two older qualitative methods, one which
has low-resolution reconstructions but uses few measurements and one which
is high-resolution but has higher measurement cost. The sparse-DSM inherits
positive qualities from both. We demonstrate the technique on measured and
simulated examples.

Keywords: Acoustic Scattering, Beamforming, Array Processing, Inverse
Problems

1. Introduction

Many classic inverse problems involve estimating physical properties of a
region by analyzing the dynamics of signals used to probe the area. Qualitative
(or “direct”) inversion methods solve this type of problem by exploiting ana-
lytical properties of the signals and hence avoid simulating the measurement
process. In this way, they are typically much faster than iterative optimization
approaches - though they also reveal less information about the unknowns and
often require more high-quality measurement data [17, 18]. In this article, we
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develop a new qualitative method, the sparse direct sampling method (sparse-
DSM), which flexibly balances measurement requirements with the resolution
of estimates.

The two problems we analyze with sparse-DSM here are prototypical test
cases for qualitative methods. The angle-of-arrival (AOA) estimation problem
(also known as the direction-of-arrival problem) is to determine the direction
from which incoming radio waves impinge on an array of receiving antennas.
This information is used, for example, by communications devices to electrically
steer their antennae in the direction of nearby communications towers [1, 54, 56].
The inverse scattering problem is to estimate the location and shape of hidden
obstacles by transmitting waves through a region-of-interest and measuring the
resulting scattered field. This has uses in, for example, non-destructive testing
and mineral prospecting [17]. While these are superficially different problems,
we demonstrate that nearly identical qualitative inversion techniques are avail-
able for their study.

Qualitative methods have attracted much attention in the inverse scattering
community since the late 1990s [27], though simplified versions of these ideas
have been present in signal processing research since at least the late 1940s [11].
Loosely-speaking, there are two categories of qualitative methods: those based
on the asymptotic behavior of post-processed data, and those based on algebraic
and analytical properties of a physical model which describes the measurement
data. Examples of the former class are conventional beamforming [11, 62] and
the direct sampling method (DSM) [36]. They are computationally very fast,
require little measurement data, and are stable with respect to high amounts
of noise. However, they often produce low-resolution estimates. We will gener-
ically refer to them as direct sampling methods. The second class contains
Capon’s beamformer [21], the inf-criterion [41], the multiple signal classification
(MUSIC) algorithm [59], the factorization method [41, 46], and the linear sam-
pling method (LSM) [17, 27]. These methods usually produce high-resolution
estimates, but are slower, usually require a lot of measurement data, and have
less stability with respect to noise.

The sparse-DSM is a generalization of methods from the two categories
which numerical results suggest produces high-resolution results under mod-
est measurement requirements. Indeed for AOA estimation problems, beam-
forming can be seen as the sparsest solution to Capon’s beamformer in a sense
we make clear below. The same relationship holds between the DSM and the
inf-criterion in the inverse-scattering context. We transition between these clas-
sical inversion techniques by looking for solutions less sparse than beamform-
ing (or the DSM) but still more sparse than Capon’s beamformer (or the inf-
criterion). We show numerically that the sparse-DSM inherits positive qualities
from both classical inversion techniques in the example inverse problems we
analyze, yielding high-resolution reconstructions from limited and noisy mea-
surement data. Since the sparse-DSM is related to classical techniques, we ant-
icapate that it will perform well for other applications where qualitative meth-
ods have been developed, such as electromagnetic and elastic inverse scattering
[8, 14, 19, 24, 25, 32, 37, 49, 52] and point estimation problems in communica-
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tions, seismology, and small-obstacle scattering [6, 34, 51, 57, 61]. Additionally,
some recent work has used DSM-type approaches to identify more information
about unknowns than typically seen in qualitative methods [16, 38, 39]. Similar
improvements may be possible with the work presented below.

Our presentation of these ideas begins by first introducing two inf-criteria in
Section 2 which will be the basis for the sparse-DSM. A subspace-constrained
solution to the optimization problems in these inf-criteria reduces to simple
functionals which have been used in the past as the basis for beamforming and
the DSM, as described in Section 3.1. Based on this observation, we continue
in Section 3 to define the sparse-constrained optimization problem which we
call the sparse-DSM. In Section 4, we describe the AOA-estimation problem
and how to apply sparse-DSM to estimate its solution. The same is done in
Section 5 for the acoustic inverse scattering problem. Based on these models we
provide a collection of reconstruction results in Section 6 from both simulated
and measured data that demonstrate the applicability of sparse-DSM as well
as some of its positive and negative properties. The conclusion in Section 7
outlines a potential future research areas related to the sparse-DSM.

Throughout the article, we will use notation typical in linear algebra and
functional analysis. For finite-dimensional objects, bold letters (e.g., A or v)
distinguish matrices and vectors from scalars. Caligraphic font (e.g., A) is
used to denote linear operators on infinite-dimensional spaces. The range and
nullspace of an operator are indicated by R(·) and N (·) respectively and the
orthogonal complement of a set W is indicated by W⊥. When working on an
inner-product space X, we denote its norm by ‖·‖X and inner-product by (·, ·)X .
The operator-norm of a linear operator mapping between spaces X and Y is
denoted ‖ · ‖X→Y while the Frobenius matrix norm is denoted ‖ · ‖F . In the
special case of the finite dimensional Euclidean norm, we use ‖ · ‖2 and (·, ·)2.
The adjoint of an operator is denoted by ·∗. Finally, normalized elements are
defined by a carrot over the element, e.g., ĝ := g/‖g‖.

Remark 1. We are not the first to join sparse optimization and qualitative
inversion. As an incomplete list, see [2, 3, 4, 5, 12, 22, 23, 31, 47, 40, 48, 64].
In such studies, qualitative methods are enhanced through sparse regularization
or an a priori assumption of a sparse solution. While often yielding impressive
results, this differs greatly from our use of sparsity to transition between different
qualitative methods.

2. Infimum criteria

We begin our discussion by presenting two similar theorems which relate the
range of an operator to an optimization problem involving that operator. The
two theorems differ in assumptions needed for their application, leading to small
differences in the optimization problem. We will see later in the article that one
of these theorems applies to point parameter reconstruction, while the other
is needed for reconstructing parameters with larger support. This distinction
is needed because in the AOA problem, we only look for point unknowns (the
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angle from which a wave impinges on an array), while in the inverse scattering
problem we look for continuous unknowns (the shape and location of hidden
objects). Indeed, in the simplest case, the sparse-DSM applies to measured
data of the form

f(x, y) =

J∑
j=1

αjψ(x; zj)ϕ(y; zj), x ∈ Γx, y ∈ Γy (1)

where zj ∈ Rd (d > 0) are the J > 0 unknowns-of-interest, αj ∈ C are unknown
scalars, and ψ and ϕ are functions whose form is known. The sets Γx × Γy :=

{(xm, yn)}M,N
m,n=1 ⊆ Rdx × Rdy (dx, dy > 0) describe a rectilinear measurement

geometry. The model (1) applies to AOA estimation and inverse scattering
under a single-scattering approximation as discussed in this article, and there
is further a large group of applications in which a measured signal is modeled
as a linear superposition of known functions with unknown parameters. An
important one for applications is exponential fitting and its generalizations [34,
51].

Note that the data matrix [L]m,n = f(xm, yn) can be factored in two different
ways, L = PQ = RAQ where [R]m,j = ψ(xm; zj), [Q]j,n = ϕ(yn; zj), A is the
diagonal matrix so that [A]j,j = αj , and P = RA. A similar factorization
is availible when the unknowns are not represented by points in space for the
inverse scattering problem. In this case, we analyze the linear operator L : X →
Y mapping between Hilbert spaces X and Y , and factored as either L = PQ
or L = RAQ. Here, P,R : Z → Y , Q : X → Z, and A : Z → Z are also linear
operators and Z is again a Hilbert space. The case when R = Q∗ and X = Y
is relevant for the applications we consider here.

2.1. Two infimum criteria

As a first step towards developing the sparse-DSM, we relate a factorization
of measured data into a product of linear operators to a functional which can
be calculated from measurement data. Note that the remainder of this Section
is included primarily for completeness and to introduce notation and a reader
familiar with infimum-criteria may move to Section 3 where the sparse-DSM is
introduced. Indeed, while Theorem 1 and Corollary 1 are new to the best of
our knowledge, they are similar to Theorem 2 and Corollary 2 which we adopt
from [41]. Each of these relates the range of an operator to an optimization
problem; the range of this operator will be shown to be related to the unknowns
of our applications of interest in Sections 4 and 5 - thus relating unknowns to
an optimization problem which can be solved to estimate the unknowns.

Theorem 1. Let X, Y, and Z be Hilbert spaces and L : X → Y be a bounded
linear operator. Assume L can be factored as L = PQ where P : Z → Y and
Q : X → Z are bounded and linear operators. Assume P is also bounded below
in the sense that there exists a constant c > 0 so that c‖z‖Z ≤ ‖Pz‖Y for every
z ∈ Z. Then, for any ϕ ∈ X,

ϕ ∈ R(Q∗) if and only if I(0)(ϕ) := inf
g∈X
{‖Lg‖Y : (g, ϕ)X = 1} > 0.
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Proof. Since P is bounded below and continuous, the factorization of L shows

c‖Qg‖Z ≤ ‖Lg‖Y ≤ ‖P‖Z→Y ‖Qg‖Z , ∀g ∈ X. (2)

Assume that ϕ ∈ R(Q∗) with some nonzero φ ∈ Z so that Q∗φ = ϕ. Then
any g ∈ X satisfying (g, ϕ)X = 1 also satisfies (Qg, φ)Z = 1. Applying 2 to such
a g (say g = ϕ/‖ϕ‖2X) demonstrates that

‖Lg‖Y ≥ c‖Qg‖Z =
c

‖φ‖Z
‖Qg‖Z‖φ‖Z ≥

c

‖φ‖Z
|(Qg, φ)Z | =

c

‖φ‖Z
> 0.

On the other hand, assume ϕ /∈ R(Q∗). We wish to demonstrate that I(ϕ) =
0. From the upper bound in (2), it is sufficient to show there exists a sequence
gn ∈ X with (gn, ϕ)X = 1 and ‖Qgn‖Z → 0 as n → ∞. Equivalently, define
hn = ϕ̂−gn and the the set Pϕ := {ψ ∈ X : (ψ,ϕ)X = 0} and demonstrate the
existence of hn ∈ Pϕ such that ‖Q(ϕ̂− hn)‖Z → 0.

Since Qϕ̂ ∈ R(Q), the result follows by demonstrating that Q(Pϕ) is dense
in R(Q) - i.e., Q(Pϕ)⊥ = R(Q)⊥. Indeed,

φ ∈ Q(Pϕ)⊥ if and only if (Q∗φ, ψ)X = 0 for all ψ ∈ Pϕ.

But this is equivalent to Q∗φ ∈ span{ϕ}. Since ϕ /∈ R(Q), it follows that
Q∗φ = 0. The equality N (Q∗) = R(Q)⊥ completes the proof.

Remark 2. The reader may note that, when LL∗ is invertible, I(0)(ϕ) has the
closed-form minimum

g(y) =
(LL∗)−1

ϕ(y)

ϕ(y)∗ (LL∗)−1
ϕ(y)

.

When expressed in terms of the AOA problem, this is typically called Capon’s
method [21]. Unfortunately, in practice L is polluted by noise and some form
of generalized inversion is needed to find g. The sparse-DSM discussed in this
paper can be considered a way to address this.

The assumption Theorem 1 that P is bounded below is relatively restrictive.
Indeed, a bounded linear operator acting between Hilbert spaces is bounded
below if and only if it is injective with closed range. This will present difficul-
ties for the inverse scattering problem, and we instead rely on the inf-criterion
introduced in [41]. We modify it here to better match the notation in Theo-
rem 1. Note that the assumptions on L and the indicator functional require
modification from Theorem 1.

Theorem 2 (Infimum-Criterion [41]). Let L = Q∗AQ be a bounded linear
operator mapping between a Hilbert space X and itself, where Q : X → Z and
A : Z → Z are bounded linear operators and Z is another Hilbert space. Assume
that A is coercive in the sense that there is a constant c > 0 such that for every
z ∈ R(Q) ⊆ Z,

c‖z‖2Z ≤ |(z,Az)Z |. (3)

Then, for any non-zero ϕ ∈ X,

ϕ ∈ R(Q∗) if and only if I(1)(ϕ) := inf
g∈X

{
|(g,Lg)X |2 : (g, ϕ)X = 1

}
> 0.
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2.2. Relationship between inf-criteria and unknowns

We wish to relate unknowns in each inverse problem to the optimization
problems in Theorems 1 and 2. This is straightforward when measurements are
of the form (1).

Corollary 1 (A min-criterion for point estimation). Let L ∈ CM×N be a matrix
which can be factored as L = PQ with P ∈ CM×J and Q ∈ CJ×N .

1. Assume P is injective. Then for any vector ϕ ∈ CN×1,

ϕ ∈ R(Q∗) if and only if I(0)(ϕ) := min
g∈CN×1

{
‖Lg‖22 : (g,ϕ)2 = 1

}
> 0.

2. Assume data is measured according to model (1) so that [L]m,n = f(xm, yn),
[P]m,j = ψ(xm; zj), and [Q]j,n = αjϕ(yn; zj). If {ψ(x, zj), x ∈ Γx}Jj=1

and {ϕ(y, zj), y ∈ Γy}Jj=1 are linearly independent as functions of zj then

for any z ∈ Rd,

z = zj if and only if I(0)
(
ϕ(·; z)

)
> 0.

Proof. 1. We may replace the infimum of I(0) in Theorem 1 with a minimum
here because I(0)(ϕ) is a linear least squares problem. Indeed, any g which
satisfies the constraint (g,ϕ)2 = 1 can be decomposed into g = ϕ̂ + f where
f is orthogonal to ϕ. Hence, if Πϕ is the matrix which orthogonally projects
onto span{ϕ}⊥ then ‖Lg‖22 = ‖LΠϕh + Lϕ̂‖22. The infimum problem in I(0) is
hence a linear least squares problem for h which always obtains its solution.

The corollary then follows immediately from Theorem 1 because P is bounded
below: when (finite-dimensional) P is injective, (P∗P)

−1
exists and hence, for

any h ∈ CJ×1,

‖h‖2 = ‖ (P∗P)
−1

P∗Ph‖2 ≤ ‖ (P∗P)
−1

P∗‖F ‖Ph‖2.

2. The linear independence assumption on ψ gives that P is injective. Hence,
part 1 of this corollary gives that for any ϕ ∈ CN×1, ϕ ∈ R(Q∗) if and only
if I(0)(ϕ) > 0. If z = zj , then ϕ(·; zj) ∈ R(Q∗) because it is proportional
to one of the columns of Q∗, which are linearly-independent by assumption.
On the other hand, if ϕ(·, z) ∈ R(Q∗) then ϕ(y; z) =

∑J
j=1 αjϕ(y; zj) for all

y ∈ Γy. By linear independence and the assumption that αj 6= 0 for each j, this
is impossible unless z = zj .

We must defer to Section 5 to prove an analogous result for the inverse
scattering problem of identifying a set D ⊆ Rd describing the shape and location
of hidden scatterers from a measured scattered field. In that section, we will
build the necessary theory to prove the hypothesis to the following corollary to
Theorem 2.
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Corollary 2. Make the same assumptions as in Theorem 2. If there is a func-
tion ϕ(·; z) ∈ X parameterized by z ∈ Rd such that

z ∈ D if and only if ϕ(·; z) ∈ R(Q∗)

then

z ∈ D if and only if I(1)(z) := inf
g∈X

{
|(g,Lg)X |

2
: (g, ϕ(·; z))X = 1

}
> 0.

While the theoretical justification of the two infimum-criteria requires dif-
ferent loss functions, in practice we treat the optimization problems in the same
way. This is because under certain circumstances their discretized forms are
equivalent.

Lemma 1 (Adapted from [15]). Assume Π∗ϕLΠϕ is positive semi-definite where

Πϕ is the projection operator used above. Then the vector g ∈ CM×1 is an
optimal solution to I(1)(z) if and only if Π∗ϕL∗Πϕh = −Π∗ϕL∗ϕ̂(·; z).

As such, as long as Π∗ϕLΠϕ is semi-positive definite, both optimization
problems can be phrased as least-squares problems. While this semi-positive
definite assumption may not always hold (for reasons related to noise or location
of measurements, for example), this does not pose a problem in results we show
in Section 6.

3. The sparse-direct sampling method

The inf-criteria was one of the earliest qualitative methods developed in
scattering theory. Nonetheless, it has received less study than other similar
techniques such as the LSM and factorization method. Part of the reason for this
is the comparitively-slow computational speed required to solve the optimization
problem in the inf-criterion. More recent work [13, 45] has used the inf-criterion
and related factorization method to develop theoretical guarantees about the
performance of DSMs which are fast and stable with respect to measurement
quality. In a similar manner, we show in Section 3.1 that beamforming and
DSM algorithms can be seen as (very) constrained solutions of the optimization
problems in infimum-criteria. Using this idea, we develop the sparse-DSM,
which is a generalization of both the inf-criterion and the DSMs discussed here.
The idea behind the sparse-DSM is to again constrain solutions of the infimum-
criteria optimization problems - but to adapt the constraint to the measurement
data. Intuitively, sparse-DSM is parameterized so that at the most constrained,
it reduces to DSM or beamforming and at the least constrained it reduces to a
full infimum-criterion.

Remark 3. It is somewhat inconvenient to refer separately to the optimization
problems posed in Theorems 1 and 2. As such, throughout the rest of the article
we use the notation

K(i)g :=

{
‖Lg‖X i = 0

|(L∗g, g)X |
2

i = 1
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to simplify the simultaneous discussion. The matrix K(i) denotes the equivalent
finite-dimensional operator.

3.1. Beamforming and Direct Sampling Methods

Solutions to the optimization problems in Corollaries 1 and 2 can be written
in the form ϕ̂+ Πϕh where Πϕ projects onto span{ϕ}⊥ and h is some element
in its domain. By taking h ≡ 0, it follows immediately from Corollaries 1 and 2
that if ϕ ∈ R(Q∗) then

I(i)
∅ (ϕ) := K(i)ϕ̂ > 0, i = 0, 1.

Relating this to the unknowns of each inverse problem, Corollary 1 yields that

if z = zj then I(0)
∅ (z) > 0. In the same way, Corollary 2 gives that if z ∈ D

then I(1)
∅ (z) > 0. This is half of the principle behind the DSM and beamform-

ing described here and elsewhere1: evaluating I(i)
∅ (z) on a grid z ∈ Z ⊆ Rd

containing the true unknowns will positively identify all unknowns-of-interest.
However, unlike in the infimum-criteria described above, we cannot say any-
thing about false positives: indeed, as we will simulate below, DSMs often blur
together nearby unknowns to make them look like a single unknown with no
separation. Such a false positive is a hallmark of the sometimes low-resolution
reconstructions produced by the class of DSMs we consider in the paper.

The second half of the justification of DSMs and beamforming algorithms

is a demonstration that I(i)
∅ (z) has a local maximum only at the unknowns-of-

interest, z = zj or z ∈ D. We will show such behavior for the AOA problem and
inverse scattering problem in the sections below. Unfortunately, we also show
that if high-resolution reconstructions are required (for example, if two point
unknowns are very close together) then we may not be able to distinguish them.
Indeed, beamforming and DSM algorithms have significant positive and negative
properties. On one hand, they have incomplete theoretical justification and low-

resolution reconstructions. On the other hand, evaluating I(i)
∅ (z) is significantly

faster than solving an optimization problem. Moreover, numerical evidence
suggests that for practical problems, there are easier-to-achieve measurement
and noise requirements for these techniques than, e.g., infimum-criteria [36, 37].
The sparse-DSM is one way to balance these positive and negative aspects.

3.2. Derivation and properties of the sparse-DSM

We call the technique introduced in the article the sparse-DSM because in
practice, the parameterization is accomplished by solving a sparse-constrained
least-squares problem described below. The sparse least squares problem is
related to unknowns through a corollary to Theorems 1 and 2.

1Early ideas for DSMs in inverse scattering [36, 37, 53] primarily considered the case of
one incident direction. The DSMs introduced in those articles do not include a norm or inner-
product because there is only one point over which to take those operations. Further studies
[44, 45] have studied DSMs with more data and derived similar indicator functions as we do
here.
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Corollary 3. Make the same assumptions as Theorem 1 (or Theorem 2). Then,
for i = 0 (or i = 1) and ϕ ∈ X,

ϕ ∈ R(Q∗) if and only if I(i)
χ (ϕ) := inf

h∈χ

{
K(i)(ϕ̂+ h)

}
> 0

for all χ ⊆ Pϕ := {h ∈ X | (h, ϕ)X = 0}.

Proof. We only consider the adaptation from Theorem 1; the proof is identical
when adapting Theorem 2.

It is immediate from Theorem 1 that I(i)
χ (ϕ) > 0 for all χ ⊆ Pϕ implies ϕ ∈

R(Q∗) since it includes the case χ = Pϕ. On the other hand, if ϕ ∈ R(Q∗) then

I(i)
Pϕ

(ϕ) > 0. Since I(i)
χ (ϕ) ≥ I(i)

Pϕ
(ϕ) for any χ ⊆ Pϕ, we see that ϕ ∈ R(Q∗)

implies I(i)
χ (ϕ) > 0 for all χ ⊆ Pϕ.

Continuing to use the same language as Corollary 3, the sparse-DSM entails

fixing a strictly-smaller subset χ̂ ⊂ Pϕ and calculating I(i)
χ̂ (ϕ). Ultimately, we

relate the unknown-of-interest (e.g., {zj}Jj=1 or D) to the sign of I(i)
χ̂ (z) evalu-

ated on a grid Z ⊂ Rd containing the unknowns. It may not be immediately
obvious why this more complicated optimization procedure with fixed χ̂ ⊂ Pϕ
offers any improvement over, for example, a standard DSM. Indeed, Corollary

3 reveals that ϕ ∈ R(Q∗) implies I(i)
χ̂ (ϕ) > 0 but that I(i)

χ̂ (ϕ) > 0 does not
necessarily imply anything about R(Q∗). In other words, the sparse-DSM is
guaranteed to reveal the location of all unknowns, but has the potential for
false positives – the same problem as standard DSM and beamforming.

The potential for improvement of sparse-DSM over other techniques be-
comes more clear by defining explicitly a false positive from a standard DSM
algorithm. Indeed, noticing that the standard DSM corresponds to the “opti-

mization problem” I(i)
χ̂ (ϕ) with χ̂ = ∅, a false positive occurs when K(i)ϕ̂ > 0

but infh∈Pϕ

{
K(i)(ϕ̂+ h)

}
= 0. As the difference in area between ∅ and Pϕ

is substantial, there are many points in the sets at which this could occur.
Intuitively-speaking, increasing the area of χ̂ (∅ ⊂ χ̂ ⊂ Pϕ) reduces the chance

that I(i)
χ̂ (ϕ) > 0 but I(i)(ϕ) = 0 simply because the size difference between χ̂

and Pϕ is smaller. This is why we expect the sparse-DSM to improve over stan-
dard DSM. Indeed, while these observations are not precise, the results shown
in Section 6 validate them on the problems we consider here.

3.3. Implementation

In practice, we implement the sparse-DSM by solving the sparse-constrained
minimization problems

I
(i)
k (z) := min

h∈CN×1

{
K(i)(ϕ̂+ Πϕh) : ‖h‖0 ≤ k

}
, (i = 0, 1), z ∈ Z (4)

where Πϕ is again the projection matrix onto span{ϕ}⊥, Z is a set containing
the true unknowns, and ‖ · ‖0 is the semi-norm which indicates the number
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of non-zero entries in a vector. We call I
(i)
k (z) the k-DSM. The product Πϕh

above can be thought of as mapping to specific subsets of Pϕ. Hence, the mini-
mization problem in (4) is a version of the minimization problem in Corollary 3;
increasing the value of k leads to a larger χ ⊂ Pϕ over which the minimization
takes place. As in the discussion above about Corollary 3, k = 0 reduces to a
standard DSM and increasing k reduces the chance of false positives while the
technique becomes an inf-criterion. However, too-small of a k still can lead to
false positives. While we do not provide a method to automate the choice of k
in this article, we remark k is independent of the unknowns themselves.

In addition to the sparse constrained indicator functions I
(i)
k (z) we will con-

sider a mismatch constrained problem which we call the error-DSM

I
(i)
δ (z) := min

h∈CN×1
{‖h‖0 : K(i)(Πϕh + ϕ̂(·; z)) ≤ δ} (i = 0, 1). (5)

In principle, δ can be chosen as a function of z, though we do not take full
advantage of such flexibility here.

There has been a large amount of work in the past 20 years on efficient
solutions to sparse estimation problems of the form (4) and (5). Since a benefit of
qualitative methods is their speed, we require a fast solution technique. Indeed,
we must solve an equation of this form repeatedly for different values of z ∈ Z.
In the results given in Section 6, we use a fast solution technique based on
the batch orthogonal matching pursuit (batch-OMP) method of [58], which
was developed to quickly solve problems of the form (4) and (5). Batch-OMP
takes a greedy approach to solving sparse least squares problems and reduces
computational overhead by computing certain matrix-matrix and matrix-vector
products only once.

Any reliable sparse optimization routine should produce similar results to
what we show here. However, for completeness, we now explain the broad
details behind the batch-OMP technique. The general sparsity-constrained least
squares problem is

min
h∈CN×1

‖A(z)h− b(z)‖22 subject to ‖h‖0 ≤ K

for some matrix A(z) ∈ CM×N and vector b(z) ∈ CM×1, both parameterized by
z ∈ Z. In other words, we aim to find the K nonzero coefficients of h so that r :=∑K
k=1

(
hk[A(z)]:,k

)
−b(z) is minimized. Solving this problem exactly is NP-Hard

so OMP algorithms take an iterative greedy approach: at each iteration n > 0,
a collection of indices non-zero indices for h, J (n−1), and the corresponding
residual r(n−1) are updated. The next non-zero index of h is determined by
finding the maximum value of maxm

∣∣[A(z)]∗:,mr(n−1)
∣∣ /‖[A(z)]:,m‖2. The non-

zero components of h are then computed by orthogonally projecting b(z) onto
the columns of A(z) corresponding to the list J (n).

The batch-OMP algorithm speeds up this process by pre-computing some
matrices which are used repeatedly for different right-hand-sides b(z). Denote
α = (A(z))∗r, α(0) =

(
A(z)

)∗
b(z), and G = (A(z))∗A(z). From the identity
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(which holds when all quantities exist)(
A

(z)
J

)†
=
((

A
(z)
J

)∗
A

(z)
J

)−1 (
A

(z)
I

)∗
,

it follows that α = GJ (GJ,J)
−1
α

(0)
J . Pre-calculating G and α(0) reduces cal-

culation time when there are a large number of right-hand-sides (see [58] for a
the details of the improvement).

Remark 4. The choice of k (or δ) is not completely clear for each application.
We have noticed empirically that k can often be chosen by examining the singular
values of the data matrix for a problem: if there is a large gap in singular values
such that they naturally separate into two sets of large-valued and small-valued
singular values, then setting k to at minimum the size of the large-valued set
tends to produce satisfactory results.

4. The Direction-of-Arrival Problem

In the AOA problem, J signals propagating through space are measured by
an array of M receivers. The signals are a result of some transmitting antennas
outputting a wave which propagates to the receivers. We assume that the
signals which impinge on the array of receivers are in the far field of the array
and are narrowband with wavenumber k = 2π

λ where λ is the wavelength of the
incident wave. Assume also that the transmitters and receivers in this problem
are isotropic, which allows us to ignore antenna specifics. This simplified model
is typically used in AOA estimation research, though some modifications may
be required in practice.

Denote the location of the mth antenna in the receiving array by xm ∈ Rd
(d > 0) and the time at which the signal is recorded by t`, ` = 1, . . . , L.
Assume each incoming wave, indexed by j = 1, . . . , J impinges on this array
from a direction on the surface of a unit ball, zj ∈ S2. In the problems we
consider here, the array is a 2-dimensional rectangle with M antennae which
are uniformly distributed in each direction, xm = (mx∆x,my∆y, 0) where
mx = 1, . . . ,Mx and my = 1, . . . ,My are indices such that M = MxMy and
∆x and ∆y are the uniform distance between successive array elements in the
x and y dimensions, respectively. For simplicity we center the z-coordinate
at 0. To simplify notation, we convert to spherical coordinates (x, y, z) =
(ρ sin (θ) cos (φ), ρ sin (θ) sin (φ), ρ cos (θ)) for ρ ≥ 0, θ ∈ [0, π], and φ ∈ [0, 2π).
The unknown AOAs zj ∈ S2 can be parameterized by (θj , φj), and for notational
ease we introduce the notation uj = sin(θj) cos(φj) and vj = sin(θj) sin(φj) and
ϕ((x, y); (u, v)) := exp (−ik (xu+ yv)).

Under these assumptions, the AOA signal model is [61]

f(xm, t`) =

J∑
j=1

sj(t`)ϕ((mx∆x,my∆y), (uj , vj)) m = 1, . . . ,M

11



where sj(t`) is the time-domain component of the measured signal at time t =
t`, ` = 1, . . . , L. Hence, the AOA estimation problem is to: Estimate (uj , vj) ∈
[−1, 1]2 from the measurements f(xm, t`).

Below we apply sparse-DSM to data collected in the data matrix L ∈ CL×M
defined by [L]`,(mx,my) = f((xmx

, xmy
), t`). This is a discretization of the op-

erator (Lg)(t) =
∫

Γx×Γy
f(x, t)g(x) dx. The data matrix can be factored as

L = PQ with [P]`,j = sj(t`) and [Q]j,(mx,my) = ϕ((mx∆x,my∆y); (uj , vj)).
Corollary 1 provides a technique to estimate (uj , vj) from L.

Corollary 4. Assume the J vectors {sj(t`), ` = 1, . . . , L}Jj=1 are linearly inde-
pendent. Then

(u, v) = (uj , vj) if and only if min
g∈RM×1

{
‖Lg‖22 : (g,ϕ((·, ·); (u, v)))2 = 1

}
> 0.

Proof. This follows immediately from Corollary 1 because ϕ(mx∆x,my∆y;u, v)
are linearly independent for different (u, v) values.

Remark 5. When sj(t) are not linearly-independent for different j - for in-
stance in the common situation when a reflection causes the same time-domain
signal to impinge on the array from multiple directions - the estimation tech-
niques discussed here lose their theoretical backing. This is commonly called the
correlated signal problem in the AOA literature and there are many methods for
overcoming it [50, 60, 65].

4.1. Beamforming

A beamformer can be constructed for this problem by following the dis-
cussion in Section 3.1 to Corollary 4. Indeed, this discussion reveals that the
indicator

I
(0)
0 ((u, v)) := ‖Lϕ((·, ·); (u, v))‖22

is positive at (u, v) = (uj , vj), j = 1, . . . , J . More work is required to determine

the behavior of I
(0)
0 ((u, v)) away from (uj , vj). To this end, note that

[Lϕ((·, ·); (u, v))]` =

J∑
j=1

sj(t`)DMx+1(k∆x(uj − u))DMy+1(k∆y(vj − v))

where DN is the Dirichlet kernel

DN (x) :=

N−1∑
k=0

exp (ikx) = exp (i(N − 1)x/2)
sin (Nx/2)

sin (x/2)
.

In the case that J = 1, a straightforward but lengthy calculation demonstrates

that I
(0)
0 (u, v) has a local maximum at (u, v) = (u1, v1). For J > 1 the cal-

culations become more difficult so we show the expected behavior of beam-
forming with simulation. Figure 1 shows the combination of Dirichlet kernels
|DN (x) +DN (x− α)| for N = 50, α = {1/16, 1/8, 1/4, 1/2} over x ∈ [−π, π].
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Here, α is analogous to the angle of one incomming wave impinging on an array
of receivers and as the figure demonstrates, the Dirichlet kernel peaks at x = 0
and x = α. Indeed, up to scaling, this figure mimics beamforming 1-dimensional
AOAs located at x = 0 and x = α. The figure also demonstrates that the reso-
lution of beamforming is not expected to be too high - when α = 1/16, there is
no obvious separation between the peaks. Indeed, this is a manifestation of the

false positive concern about beamforming we discuss above: when I
(0)
0 (u, v) is

positive for (u, v) which are not true AOAs, we are not able to visually distin-
guish between true AOAs close to each other. We refer to the extensive research
on beamforming in the communications literature ([62] and references therein)
for more details and a deeper discussion of this technique, including ways to
improve the resolution of reconstructions.

(a) α = 1/2 (b) α = 1/4

(c) α = 1/8 (d) α = 1/16

Figure 1: Plots of |D50(x) + D50(x − α)| for differing α in decreasing order from top-left to
bottom-right.

5. Sparse-DSM for the inverse medium problem

We continue now with our second application, inverse scattering of penetra-
ble media from acoustic waves. As with the case of AOA estimation, we aim to
use (4) and (5) to solve inverse problems in this context. In order to do that,
we must establish both DSM-type results and infimum-criteria-type results. In
this Section, we begin by describing the mathematical details of acoustic wave
scattering and then move to building up the DSM and infimum-criteria results
needed to justify the application of the sparse-DSM.

Following for example [17], assume time-harmonic acoustic waves with wavenum-
ber k > 0 are traveling through a medium whose index of refraction n ∈ L∞(Rd)
only varies over a region of compact support. Assume a constant unitary index
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of refraction (n = 1) outside of this region. Denote the contrast of the media by
m = n− 1 and by D = supp(n− 1) the shape and location of hidden scatterers
to be recovered. Under these assumptions, a scattering experiment proceeds
when an incident wave ui(·; y) (whose form is specified below) is emitted from
a point y ∈ Γi ⊆ Rd−1. The resulting scattered field us(x; y) measured at
x ∈ Γm ⊆ Rd−1 satisfies

∆us + k2nus = −k2mui

lim
r→∞

r−(d−1)/2

(
∂us

∂r
− ikus

)
= 0 where r = |x|.

The (Sommerfeld) radiation condition is required for uniqueness. Assume the
scattered field is measured on the same surface as the surface from which incident
fields are emitted, Γi = Γm =: Γ where Γ is a closed, connected, and bounded
surface containing D

The qualitative methods we discuss in this article depend on a near-field
data operator N : L2(Γ)→ L2(Γ) defined by

(N g)(x) =

∫
Γ

us(x; y)g(y) dS(y), for x ∈ Γ.

The inverse scattering problem is to estimate D from us(x; y), x, y ∈ Γ.
The factorization of N is derived using the Lippmann-Schwinger equation

[28]

us(x; y) = −k2

∫
D

m(z)Φk(x, z)
(
us(x; y) + ui(x; y)

)
dV (z), (6)

where Φk is the fundamental solution to the Helmholtz equation,

Φk(x, y) :=

{
i
4H

(1)
0 (k|x− y|) d = 2

exp ik|x−y|
4π|x−y| d = 3.

Following for example [10, 33], N = GAH where H : L2(Γ)→ L2(D) is defined
by

(Hg)(z) =

∫
Γ

ui(z; y)g(y) ds(y), for z ∈ D

and G : L2(D)→ L2(Γ) is defined by

(Gf)(x) =

∫
D

Φk(x, z)f(z) dV (z), for x ∈ Γ.

The operator A : L2(D)→ L2(D) is defined as

(Aψ)(z) = −k2m(z) (w(z) + ψ(z)) , for x ∈ D

where w ∈ H1
loc(Rd) the solution to

∆w + k2nw = −k2mψ in Rd (7)

lim
r→∞

r−(d−1)/2

(
∂w

∂r
− ikw

)
= 0 where r = |x|. (8)
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5.1. Infimum criterion for near-field scattering

Three hypothesis need to be met in order to relate D to the solution of an
optimization problem, according to Theorem 2 and Corollary 2. The first is
to demonstrate N has a symmetric factorization, which is not immediate from
the factorization given above. The second is that the middle operator of this
factorization is coercive. Finally, we must relate D to R(H∗) in accordance with
Corollary 2. Each of these points has been the subject of recent research, which
we summarize and discuss here.

To meet the requirement that N have a symmetric factorization, N =
H∗AH, we need to show G = H∗. Formally, a short calculation reveals that

(H∗f) (x) =

∫
D

ui(z;x)f(z) dV (z), x ∈ Γ.

This suggests using non-physical incident waves of the form ui(x; y) = Φk(x, y)
leading to G = H∗. This is a common practice [7, 9, 43, 33] and it can be shown
that these non-physical incident fields can be approximated arbitrarily-well with
physical incident fields2.

The second difficulty in applying Theorem 2 is the need for A to be coercive.
There are numerous assumptions on m known to ensure this [10, 18]. We make
the following assumption throughout that is sufficient for coercivity of A.

Assumption 1 (Adapted from [10, 33]). Assume that n ∈ L∞(D) and that
there is a constant n0 > 0 such that either

• Im n(x) ≥ n0 for almost all x ∈ D

• 1− n(x) ≥ n0 for almost all x ∈ D

• n(x)− 1 ≥ n0 for almost all x ∈ D.

Under this Assumption 1, we have that there exists a c > 0 such that for any
ϕ ∈ R(H) ⊂ L2(D), c‖ϕ‖2L2(D) ≤

∣∣(Aϕ,ϕ)L2(D)

∣∣ and hence can apply Theorem
2.

The final assumption required to apply an infimum criterion for the local-
ization of D is relating D to R(H∗). This relies on statements about an interior
transmission eigenvalue problem,

∆u+ k2nu = 0 in D, ∆v + k2v = 0 in D,

(u− v) = 0 on ∂D,
∂

∂ν
(u− v) = 0 on ∂D

(9)

The corresponding transmission eigenvalues are the k ∈ C such that there are
non-trivial solutions (u, v) ∈ L2(D)×L2(D) to (9) with difference u−v ∈ H2(D).
The results we state below depend on the wavenumber of the incident field not
being a transmission eigenvalue.

2Another option is to use physical incident waves ui(x; z) = Φk(x, y), but process the data
differently. Indeed, [10, 35] analyze an operator L = BN where B is some linear operator
which is both computable and which modifies N such that L has the correct factorization.
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Assumption 2. The wavenumber k is not a transmission eigenvalue for (9).

There are numerous results demonstrating that the set of transmission eigen-
values is almost empty (i.e., countable without finite accumulation points) [18].
For example, if m is strictly positive in a neighborhood around ∂D, then the
set of transmission eigenvalues is empty almost everywhere. This assumption
provides a link between the location of D and an infimum criterion.

Lemma 2 ([33], Theorem 3.2). Let Z ⊆ Rd be a sampling region such that
D ⊆ Z ⊆ interior(Γ). Under Assumption 2,

Φk(·, z) ∈ R(H∗) if and only if z ∈ D.

All together, we thus have an infimum criterion to serve as the basis for a
sparse-DSM for inverse acoustic scattering.

Corollary 5. Under Assumptions 1 and 2,

z ∈ D if and only if I(1)(z) = inf
g∈X

{∣∣∣(g,N ∗g)L2(Γ)

∣∣∣2 : (g,Φk(·, z))X = 1

}
> 0.

5.2. Direct sampling method for extended obstacles

To derive a DSM, we couple Corollary 5 with the discussion in Section 3.1.

Indeed, if z ∈ D, I(1)
∅ (z) :=

∣∣∣(NΦk(·, z),Φk(·, z))L2(Γ)

∣∣∣2 > 0. Using this I(1)
∅ (z)

as a basis for a DSM is similar to those discussed in [44, 45].

To understand the behavior of I(1)
∅ (z) away from D, assume that Γ = ∂BR

where BR is the ball centered at the origin with radius R. It is known [29] that

(HΦk(·, z))(x) =

∫
∂BR

Φk(x, y)Φk(z, y) dS(y) = Im Φk(z, x) + w(z, x)

where w satisfies the estimate ‖w‖W 1,∞(Z×Z) ≤ CR1−d so long as D ⊂ Z ⊂ BR.
The factorization of N and the definition of Φk implies that there is a C > 0 so
that

I(1)
∅ (z) =

∣∣∣(AHΦk(·, z),HΦk(·, z))L2(D)

∣∣∣2 ≤ C∥∥HΦk(·, z)
∥∥4

L2(D)

= C
∥∥Im Φk(z, x) + w(z , x)

∥∥4

L2(D)

≤ C
(

dist(z,D)
1−d
2 +R1−d

)4

.

Here we have used the property that the imaginary part of the fundamental
solution, J0(t), which has a decay rate of t−1/2 as t → ∞ for the R2 case and
for the case in R3, we have used that j0(t) has decay rate of t−1 as t→∞. This

implies that the indicator I(1)
0 (z) decays as the sampling point z moves away

from the scatterer D at a rate related to the distance between z and D and the
distance between D and measurement locations.
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5.3. Direct sampling for point obstacles

In the case of weakly-scattering point scatterers, we can adapt our DSM to
use Theorem 1 instead of Theorem 2. In doing this, we derive a DSM more simi-
lar to that introduced in [36, 37, 53] and elsewhere. Indeed, assume D = ∪Jj=1Dj

is a union of small balls centered at points zj ∈ Rd each with radius ε� 1. Let

m(z) =
∑J
j=1mj1Dj

(z) be constant on each ball with m = O(1). Neglect-

ing multiple scattering, using ui(x; y) = Φk(x, y) for consistency, and using the
Lippmann-Schwinger equation (6) yields the point-obstacle Born approximation
[28]

usB(x; y) := −k2
J∑
j=1

mjΦk(x, zj)Φk(y, zj).

In this case, the near field operator becomes

(Nbg)(x) = −k2
J∑
j=1

mjΦk(x, zj)

∫
Γ

Φk(y, zj)g(y) ds(y).

Using the linear independence [20] of the sets {Φk(x, zj), x ∈ Γ, j = 1, . . . , J}
and {Φk(y, zj), y ∈ Γ, j = 1, . . . , J} allows us to apply Corollary 1 to the Born
approximation data and leads to the DSM indicator functional

I(0)
∅ (z) = ‖NbΦk(·, z)‖2L2(Γ). (10)

In the same way as for extended inhomogeneities,

I(0)
∅ (z) ≤ C max

j

(
ImΦk(z, zj) +R1−d)2 ≤ C max

j

(
dist(z, zj)

1−d
2 +R1−d

)2

for some C > 0. As z → zj , we expect to see peaks in I(0)
∅ (z) and as z moves

away from each zj we expect to see valleys.
Interestingly, the same bound holds true (with a different constant) for

I(0)
∅ (z) when the scattered field is only measured at one location. This DSM,

with indicator functional I(0)
∅ (z) = |NbΦk(x, z)|2, has same form as those in

[36, 37, 53]. Requiring less data is a big benefit of the DSMs over classical
qualitative methods. This form of the DSM, however, loses its relationship with
1.

6. Computational Results

In this section we will present a number of numerical examples demonstrating
the effectiveness of our new scheme, as well as how it relates to more commonly-
used qualitative methods. All simulated examples will be polluted with additive
Gaussian noise of the form fmeasured = f clean +σε. Here, ε is a Gaussian random
variable with mean 0 and variance 1 in its real and imaginary parts. The
standard deviation σ is chosen to ensure the measured data has a particular
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signal-to-noise ratio (SNR); if there are N measurements, we define σ according
to σ = ‖f‖/

√
N × SNR, which implies that SNR ≈ ‖f‖/E‖σε‖. We remark

that for the purposes of the examples we consider below, the values of th e
indicator functions are meaningless. They can be normalized or transformed
with a monotonic function to any value with no change in interpretation and
hence should not be compared between different algorithms. Indeed, in Section
6.3 we plot indicator functions on a 10 log10 scale which better captures their
full range.

The first example is a particularly simple case with closed-form expressions
for data, which we use to show some basic properties of sparse-DSM. The sim-
ulated data for the inverse scattering examples were calculated with a volume
integral equation method described in [55]. It uses a low-order Galerkin dis-
cretization of the Lippmann-Schwinger equation 6.

We also apply the sparse-DSM to experimentally-measured data in 6.2. The
measurement, which is described in more detail in that section and in [63],
allows for AOA estimation in a realistic situation. It was collected by staff in the
Communications Technology Laboratory at the National Institute of Standards
and Technology.

6.1. A 1-Dimensional AOA Example

We first analyze a AOA estimation problem in one dimension. The data in
this simplified problem takes the form

f(xm, t`) =

J∑
j=1

αjsj(t`) exp (−ikm∆xuj), m = 1, . . . ,M and ` = 1, . . . , L

(11)
where k > 0 and ∆x > 0 are considered known and uj ∈ [−1, 1] are the
unknowns-of-interest. For simplicity, we consider sj(t`) = exp (−i`∆tuj) which
are linearly independent for different j. This problem is very similar to the
sparse spectral density estimation problem of finding the best representation of
a signal in terms of a sparse Fourier series for which there are many applications
and solution techniques [34]. Since sj and ϕ(x;uj) := exp (−ikxuj) are linearly
independent for different j, we can estimate uj based on Corollary 1 .

In Figure 2, we show the transitioning of k-DSM from a standard DSM to
a full infimum-criterion. There are 8 unknowns randomly placed in [−1, 1] in
this problem indicated by semi-transparent vertical lines. Data is collected on
xm = tm = m∆ for m = 0, . . . , 19 and ∆ = 50/19. Very small amounts of noise
(SNR≈ 3× 105) are added to the measurements. The figure indicates that the
DSM cannot distinguish between each of the unknowns, particularly the middle
ones. The infimum-criterion works well here because there is little noise and
a larger amount of data. We also see that as kDSM increases, the estimates
produced by the sparse-DSM improve; when kDSM = 4, estimates from the
sparse-DSM are sharper than the DSM, but the right-most unknowns are still
blurred. When kDSM = 8, the sparse-DSM performs as well as the inf-criterion.
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One benefit of qualitative methods over traditional iterative-based tech-
niques is their speed. This is particularly true of DSMs. Table 1 compares
an estimate of computational time between the DSM, k-DSM, and inf-criterion
in the example discussed above. We calculate these times for two different data
matrix sizes: 20 × 20 and 100 × 100. As expected, the DSM is significantly-
faster than the other techniques - although it also does not perform as well.
On the other hand, k-DSM is slower than the infimum-criterion on the small
data example, but significantly faster for the larger-sized data matrix. While
differences in implementation and computing resources effect on this sort of
analysis (and so we omit more details), we expect that DSMs will typically be
much faster than sparse-DSMs or infimum-criteria while sparse-DSMs will be
of similar speed as infimum-criteria on small amounts of data and significantly
faster for larger amounts of data. These computational trade-offs are similar for
each of the more realistic examples which follow.

(a) DSM (b) k-DSM, kDSM = 4

(c) k-DSM, kDSM = 8 (d) Infimum-criterion estimate

Figure 2: Reconstructions of 8 1-dimensional AOAs.

6.2. Reconstructions for AOA estimation with measured data

We now analyze data from a AOA estimation measurement done at the
Communications Technology Laboratory at the National Institute of Standards
and Technology. The data we analyze is a result of incident waves which were
transmitted into an area with two metal rods. The resulting scattered waves
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20× 20 measurements (s) 100× 100 measurements (s)
DSM 0.48 1.8

k-DSM (kDSM = 4) 3.7 6.1
k-DSM (kDSM = 8) 6.7 9.1
Infimum-criterion 3.1 56

Table 1: Timing of qualitative methods applied to the problem in Figure 2.

were measured at an array of receivers. Measurements were done in the fre-
quency domain on a grid of 26.5GHz to 40GHz with a 10MHz frequency step
and were converted into the time domain prior to analysis. The spatial mea-
surement array was a uniformly-spaced two-dimensional grid with a spacing of
approximately 3.7mm. The measurement data consisted of 1225 spatial mea-
surement locations each with 1350 time steps. Full details on the experimental
procedure are given in [63].

True AOAs were not known for this dataset, so we compare our techniques
to the results of the MUSIC algorithm. MUSIC is known to perform well on this
type of data, though there can be difficulties when the true number of AOAs
is unknown [59]. Figure 3 shows the estimated AOA values using different
estimation techniques. Each algorithm is run on the sampling grid [−1, 1]2

though Figure 3 is zoomed-in to [−0.25, 0.25]× [−0.25, 0.5]. Beamforming does
not distinguish between the cylinders as reliably as the other three methods,
which perform well. Indeed, the beamforming results have extra peaks to the
right and left of the true peaks and the two true peaks merge together more
significantly than the other methods. This is related both to the resolution
issues depicted in Figure 1 and to the related side-lobe phenomenon [62].

(a) MUSIC (b) Beamforming (c) k-DSM, kDSM =
1

(d) error-DSM,
δDSM = 0.94

Figure 3: AOA estimates from two nearby cylinders.

6.3. Reconstructions from acoustic scattering

Finally, we apply each of the sparse-DSMs to simulated acoustic scattering
problems, as justified in Section 5. Unless otherwise noted, we use a wavenumber
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of k = 8 and a circular multistatic measurement geometry centered at the origin
with radius of 4 units.

The first example in Figure 4 shows the reconstruction of three small circular
unknowns whose true locations are (0, 1.5), (1, 0), and (−1,−1). For this exam-
ple, we take SNR=1000 indicating very low noise and measure on 25 tranceivers.
The DSM and both sparse DSM algorithms perform well here, in particular the
error-DSM - note the logarithmic scale of the plotted values. Since these are
small scatterers, we used I(0)(z) as an indicator functional here.

(a) DSM (b) k-DSM, kDSM = 5 (c) error-DSM, δDSM = 5 ×
10−7

Figure 4: Reconstructions of three point scatterers.

The next example, shown in Figure 5, demonstrates an improvement in
reconstruction resolution for the sparse-DSM compared to the standard DSM.
For the figures on the left of the figure, two small scatterers are centered at
(±0.4, 0) and have radii of 0.1 units. On the right, the objects are closer together
and are each centered at (±0.1, 0) (so they touch at the origin). We set SNR
= 1E6 to mimic zero noise. For each reconstruction method, the well-separated
objects are easily distinguished. The nearby objects are slightly different; the
DSM merges them completely, while the k-DSM indicates a small separation.

We next demonstrate the performence of the sparse-DSM with indicator
funcitonal I(0)(z) under limited aperture measurements in Figure 6. The the-
oretical justification provided in Section 5 does not apply in this simulation
because the measurement surfaces are open curves. Indeed, while the sparse-
DSM performs well in this experiment, there are false negative reconstructions,
which would not be expected if the theory developed above held fully. The are
five small scatterers of different sizes and shapes to be reconstructed in this
example are indicated by solid black lines. Here we take SNR=100 and 10 mea-
surements. In Figure 6a, measurements are taken on the half-circle of radius 4
centered at zero below the x-axis. In Figure 6b, measurements are taken on the
quarter-circle of radius 4 whose arc is centered on (0,−4). We see that in the
half-circle measurement case, all 5 obstacles are identified. The reconstruction
is worse for the quarter-circle measurement case. Nonetheless, 2 scatterers are
robustly identified and smeared versions of two others are reconstructed. One
scatterer is missed completely. Considering the difficulty of most qualitative
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(a) DSM Estimate (b) DSM Estimate

(c) k-DSM Estimate, KDSM=2 (d) k-DSM Estimate, KDSM=3

Figure 5: Reconstructions of two small scatterers with time-harmonic incident measurements
with 40 trancievers, SNR=1E6. Scatterers indicated by black circles.

methods to reconstruct scatterers in moderate-noise limited-aperture scenarios,
we see even the quarter-circle reconstruction as a success.

Finally, we turn to a case with scatterers of significantly-different sizes with
the indicator function I(1). Figures 7b-7d show reconstructions of the shape
in Figure 7a from 40 multistatic transceiver with SNR = 1000 and k = 12.
The indicator function was evaluated on Z = [−2, 2]× [−2, 2], but we focus on
[−0.75, 1.2] × [−0.5, 1] to show more detail. Both sparse-DSM algorithms are
able to capture the multi-scale behavior of the object while the standard DSM
misses the smaller circle.

7. Conclusions

We have presented a new technique for estimating unknown parameters in
physically-important problems without the need of a computationally-expensive
forward simulation. The main benefits of the new technique are 1) that it is
flexible with respect to application, particularly in problems relating to inversion
of propagating waves in an unknown medium; 2) numerical evidence suggests
that it produces high-resolution estimates even for challenging situations with
low-diversity of measurements; and 3) it provides a link between two inversion
techniques, one with a solid theoretical background but difficult implementation
and one with less theory but better practical benefits. In the future, we aim
to develop a data-driven selection criterion for the sparsity parameters kDSM
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(a) k-DSM with half-circle aper-
ture, kDSM = 6

(b) k-DSM with quarter-circle
aperture, kDSM = 5

Figure 6: Reconstructions of five small scatterers with a limited aperture measurement geom-
etry.

(a) True locations (b) DSM

(c) k-DSM, kDSM = 4 (d) error-DSM, δDSM = 0.6

Figure 7: Reconstructions of a complex geometry with multiscale obstacles.
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and δDSM. We also plan to apply the sparse-DSM to more problems in inverse
scattering, such as time-domain inversion.

There is a connection between inversion techniques for the AOA problem
and the inverse scattering problem: indeed, as discussed above, this connection
relates Capon’s method and beamforming in AOA estimation to the inf-criterion
and DSM in inverse scattering. The similarities between MUSIC and the linear
sampling and factorization methods have been discussed in previous literature as
well [26, 30, 42]. The interplay between these problems presents an opportunity
for researchers in either field to make contributions to the other, and we rec-
ommend researchers exploit these similarities to improve estimation techniques
across the board.
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